Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

THE HIGH-COMPRESSION OIL ENGINE

1919-01-01
190039
THE ever-increasing demand for highly volatile fuels and constantly decreasing volatility, constitute a serious problem. Synthetic fuels have been suggested as a remedy, but these require a change in carburetion methods. It is the author's conviction that, if any redesigning is necessary, this should embody a combustion method by which any of the existing liquid hydrocarbons can be utilized and further change of method obviated, if a new fuel should later be developed. The high-compression engine is presented as a solution. Proof is offered that by its adoption any liquid hydrocarbon fuel can be utilized under any temperature condition and a real saving in fuel accomplished through increased thermal efficiency. Sustained effort should be made along these lines to increase thermal efficiency and provide an engine of adequate power, flexibility, ease of control and ability to operate on any of the fuels obtainable now or later.
Technical Paper

PROGRESSIVE AND RETROGRESSIVE DESIGNING

1919-01-01
190032
SOME practical examples of correct as well as of incorrect methods of designing are studied, using a motor vehicle for illustration. The mechanism of such a vehicle should be very simple, and the elimination of certain links and members here and there may become more or less desirable. It is essential to know how much this will burden other members, and what strengthening or even redesigning may become necessary. It has been proposed to eliminate the torque and radius-rods. By formulas and drawings the author shows how complex the problem is and the various changes that must follow such an attempt. A vehicle must have much stiffer springs if the torque rod is to be eliminated. This inevitably leads to a study of springs and of the influences of brakes. A vehicle can be operated at somewhat higher speed with a torque-rod.
Technical Paper

A MODIFIED DESIGN OF CLASS B TRUCK ENGINE

1919-01-01
190031
THE design of a modification of the Class B Government standardized truck engine is presented, the principal object being a saving in weight without sacrificing either durability or safety factors. The crankcase design is rigid, but the metal is distributed so that the weight will be a minimum. The crankshafts are made of chrome-nickel steel of an elastic limit of 120,000 lb. per sq. in., which further carries out the idea of durability with low weight. The connecting-rod length is slightly more than twice that of the stroke, and this, with light-weight pistons, obviates vibration, without adding weight to the engine on account of increased cylinder height. The flywheel and bell-housing diameters were selected with a view to securing enough flywheel weight for smooth running without increasing the engine weight materially. All-steel supports reduce breakage of arms to a minimum. The manifolds are carefully designed to give economical performance, even with low-grade fuels.
Technical Paper

HOT SURFACE OIL ENGINES FOR INDUSTRIAL PURPOSES

1919-01-01
190036
THE oil engines described are for stationary or land installations and are of the “hot-surface” design with combustion at constant volume. Progress in the design is referred to and the thermal efficiency of modern designs is compared with that found in engines twenty-five years ago. Three important features are reviewed, namely: (a) Reliability, (b) first cost and (c) economy. Improvements in the design of spraying devices, and other details of construction which have brought about greater reliability, are referred to. Dimensions of large two and four-cycle oil engines are given, and the first costs of each type are contrasted. The greater economy of the modern oil engine as compared with the earlier type is explained. Indicator cards, test data, speed, weights and other details of interest are enumerated concerning the De La Vergne SI type of oil engine, this being an example of the results obtained in a modern hot-surface-type oil engine.
Technical Paper

WORKING PROCESSES OF INTERNAL-COMBUSTION ENGINES

1919-01-01
190058
A new type of automotive engine should be the quest of all designing engineers. Investigation has revealed the fact that 68 per cent of all tractor engine troubles occur in magnetos, spark-plugs and carbureters, the accessories of the present-day automotive engine. Four-fifths of the fuel energy supplied is regularly wasted, yet the fuel is a liquid meeting severe requirements of volatility, etc., and is already becoming scarce and costly. In an airplane, fuel is carried by engine power. In ocean-going cargo vessels it increases available revenue space. It is at once clear that for purely practical reasons the question of fuel economy, no less than the question of the nature of the fuel, becomes momentous. What fuel will do is entirely a question of what process it is put through in the engine; in what way combustion is turned into power.
Technical Paper

HEAVY-FUEL CARBURETER-TYPE ENGINES FOR VEHICLES

1919-01-01
190069
Manufacturers of carbureters and ignition devices are called upon to assist in overcoming troubles caused by the inclusion of too many heavy fractions in automobile fuels. So far as completely satisfactory running is concerned, the difficulty of the problem with straight petroleum distillates is caused by the heaviest fraction present in appreciable quantity. The problems are involved in the starting, carburetion, distribution and combustion. An engine is really started only when all its parts have the same temperatures as exist in normal running, and when it accelerates in a normal manner. Two available methods, (a) installing a two-fuel carbureter, using a very volatile fuel to start and warm-up the engine, and (b) heating the engine before cranking by a burner designed to use the heavier fuel, are described and discussed.
Technical Paper

A COMPARISON OF AIRPLANE AND AUTOMOBILE ENGINES

1919-01-01
190006
ANY aggregation of parts assembled to obtain a mechanical result is a series of compromises. The relative importance of the objectives governs the nature of the compromise. The major objectives to be considered in the design of airplane engines are (1) Reliability (2) Small weight per horsepower (3) Economy of fuel and oil consumption (4) Carburetion that permits of easy starting; maximum power through a range of 30 per cent of the speed range; and idling at one-quarter maximum speed without danger of stalling (5) Ability to deliver full power through a small speed range without excessive vibration (6) Complete local cylinder-cooling under conditions of high mean effective pressure (7) Compactness The automobile engine must have (1) Reliability (2) Silence (3) Carburetion that accomplishes proper and even firing in all cylinders under varying throttle conditions, through speeds covering more than 90 per cent of the speed range of the engine.
Technical Paper

HIGH-SPEED HIGH-EFFICIENCY ENGINES

1919-01-01
190008
ENGINEERS have different ideas regarding highly efficient and moderately efficient engines, but designers dare not ignore the fact that the public requires today a small very high-speed engine, with good torque at low speeds, and capable of revolving efficiently at very high speeds. These two characteristics are difficult to attain, since in practice one is really opposed to the other. To obtain high speeds with power, the valve areas, valve parts, carbureter, etc., should not be restricted in any way, while to get a good mixture at low speed with heavy torque means a different valve-setting and more or less restricted port and valve areas, etc., to secure high gas velocities. The author states that the fundamentals of high-speed engines are high volumetric efficiency; high compression, to aid in obtaining rapid combustion at high speeds, and light reciprocating and rotating parts, to secure high mechanical efficiency.
Technical Paper

LESSONS OF THE WAR IN TRUCK DESIGN

1917-01-01
170027
The title of this paper fully indicates its scope. The author presents an intimate picture of conditions prevailing at the war front which affect the operation and maintenance of war trucks, and these two factors in turn indicate the trend that design should take. The training of the mechanical transport personnel of the Army is also gone into at some length. The English and American trucks used earlier in the war consisted of about nineteen different makes and forty-two totally different models, resulting in a very serious problem of providing spare parts and maintenance in general. In the British Army transportation comes under an Army Service Corps officer called the Director of Transport and Supplies. At the outbreak of the war these officers had had little mechanical experience, horses being employed principally. In the French Army motor vehicles were used to a greater extent before the war, under the artillery command.
Technical Paper

SOME ESSENTIAL FEATURES OF HIGH SPEED ENGINES

1917-01-01
170004
The author outlines methods for producing high-speed engines with high mean effective pressure and gives data resulting from several years' experimental work. He discusses the desirable stroke-bore ratios; valve area, weight, dimensions, location and timing; compression ratios; ignition requirements; and the location and means for operating camshafts and other valve-actuating mechanism. Data are given regarding the best material and dimensions for pistons and the desirable number of rings. The physical characteristics of alloy steel desirable for use in connecting-rods are mentioned. Similar data, including dimensions and factors controlling the construction of the crankshaft and its bearings are included. The relation of the inertia stresses set up by reciprocating parts to those due to the explosion and compression pressure on the piston head is indicated, and the maximum total stress deduced.
Technical Paper

DYNAMIC BALANCING OF ROTATING PARTS

1917-01-01
170005
The author points out the necessity of obtaining dynamic or running balance of rotating parts, especially in automobile-engine construction. He discusses the manifestations of the lack of static and running balance, such as vibration and high bearing pressures. Formulas are supplied for calculating bending moments and centrifugal forces in a crankshaft that is out of balance. Methods for obtaining static balance are described and the possible conditions existing after static balance is obtained are treated, with especial reference to the existence of one or more couples. Descriptions are given of two representative machines that are used to locate couples and correct for them. The principles of operation are made clear and advantages and disadvantages of each type are brought out fully.
Technical Paper

AVIATION ENGINE DEVELOPMENT

1917-01-01
170042
This paper first traces the early development of aviation engines in various countries. The six-cylinder Mercedes, V-type twelve-cylinder Renault, and six-cylinder Benz engines are then described in detail and illustrated. Various types of Sunbeam, Curtiss, and Austro-Daimler are also described. The effect of offset crankshafts, as employed on the Benz and Austro-Daimler engines, is illustrated by pressure and inertia diagrams and by textual description. The paper concludes with a section on the requirements as to size of aviation engines, four curves showing the changing conditions which affect the engine size requirements. These curves relate to variations of temperature, air density, engine speed, airplane speed and compression ratio required to compensate for decrease in air density, all as related to varying altitude.
Technical Paper

PROBLEMS OF CRANKSHAFT DESIGN

1917-01-01
170040
The forces necessary to induce and maintain gasoline engine speeds of 3000 r.p.m. or faster, as well as other forces closely associated with high speeds, are numerous. The author has, however, confined his discussion to the three most important groups of forces upon which, in the main, the smooth running and the life of an engine depend. The different component forces were determined in respect to two engines of equal capacity for twenty-four crank positions, uniformly spaced at intervals of 30 degrees, which constitutes two revolutions and one complete cycle in the case of four-stroke cycle engines. Medium-sized six and twelve-cylinder engines were chosen for investigation. Corresponding components were combined as resultant forces and graphically represented in magnitude and direction. Several such characteristic diagrams of the resultant forces acting upon crankpins and main bearings of the two engines investigated are reproduced throughout the paper.
Technical Paper

PROBLEMS IN HIGH-SPEED ENGINE DESIGN

1916-01-01
160023
The author outlines in a general way the relation of car performance to modern engine development. He considers particularly weight reduction and torque performance of high-speed engines, giving the undesirable characteristics attending the increased torque range gained by higher speed. He next discusses the relation of torque to total car weight, to acceleration and to hill-climbing ability and suggests a method of determining the value of a car in terms of its performance ability. The author holds incorrect those systems in which the amount of lubrication is in proportion to speed only; and in which oil for crankshaft and crankpin bearings must cool as well as lubricate them. He shows a system designed to solve these oiling problems. Static, running and distortion balance of a rotating mass are defined by the author, who shows how they apply to a large number of types of crankshafts.
Technical Paper

POSSIBILITIES OF THE CONSTANT PRESSURE CYCLE

1916-01-01
160021
The authors first define the elementary conditions governing combustion efficiency, dividing these conditions into three main classes. They next compare engines operating on constant volume, constant temperature and constant pressure cycles, dealing specifically with the Otto, Diesel and semi-Diesel types. The main part of the paper is devoted to an outline of the constant pressure cycle, analyzing its advantages as compared with the merits of the constant volume cycle now used in internal-combustion engines. The paper is concluded with a detail description of a proposed constant pressure engine.
Technical Paper

Engine Control System for Lean Combustion

1800-01-01
871171
In order to achieve lean burn engine control system, it is necessary to develop high accuracy air fuel ratio control technology including transient driving condition and lean burn limit expansion technology. This paper describes the following. 1 The characteristics of the transient response of the fuel supply are clarified when various kinds of air flow measuring methods and fuel injection methods are used. 2 To achieve stable combustion in lean mixture, fine fuel droplet mixture, whose diameter is less than 40 μm, needs to be supplied.
X